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SUMMARY

The Air Force's Learning Abilities Measurement Program (LAMP) conducts basic research on the L00

nature of human learning abilities, with the ultimate goal of contributing to an improved personnel

selection and classification system. To date, studies in the program have investigated the relationship

between aptitude measures and performance on simple learning tasks. One limitation to these studies

is that it may be inappropriate to generalize results obtained to an operational setting. Thus, future

efforts will validate the aptitude tests against more complex learning such as computer programming,

electronic troubleshooting, flight engineering, and air traffic control.

Before the newer effort is underway, it is critical to give serious attention to the question of how

learning might be measured in more complex environments. In this paper, we demonstrate how U
learning indicators may be derived from a taxonomy of learning to ensure that a wide range of learning

outcomes will be assessed during instruction. The paper first reviews existing taxonomies, and points

out their limitations. A taxonomy is then proposed based on a synthesis of current thought regarding

the forms of knowledge, the types of learning activities, the importance of the domain, and the effects

of the learner's style. The taxonomy is applied to analyze some computerized instructional programs

that attempt to measure student learning, and show how the programs might be improved by

measuring a broader variety of learning outcomes. The paper concludes by speculating about how the

taxonomy aids consideration of a broad variety of questions concerning the relationships between basic

cognitive skills and learning outcomes, and the relationships among different kinds of learning

experiences. •
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1. INTRODUCTION

What is the relationship between intelligcncc and learning ability? This question engaged

contributors to the original Learning and Individual Differences, and we believe (and hope to show

how) the sophistication of the answer to this question highlights, perhaps as clearly as to any other

question, exactly how far our theories have come over the last 20 years.

Until recently, and certainly in evidence throughout that previous volume, the typical response to

such a question might very well have been "there is no relationship between intelligence and the ability

to learn" or "the relationship is weak at best." This position reflects conclusions drawn from the widely

cited series of studies by Woodrow (1946), who found that with extended practice on a variety of

learning tests (e.g., canceling tasks, analogies, addition), the performance of brighter students did not

improve at a rate substantially greater than that shown by poorer students. Woodrow's studies are no

longer viewed as incontrovertible in addressing the intelligence-learning issue, primarily because of

problems with the measures of learning ability he employed; 1-is lca'ining tasks may hAve b-cUn to

simple (Campione, Brown, & Bryant, 1985; Humphreys, 1979) and his conception of learning as

improvement due to practice was too simplistic. Had he selected other kinds of learning tasks, and

measured learning with other performance indices, his results might have been quite different, as

subsequent investigation has shown (e.g., Snow, Kyllonen, & Marshalek, 1984).

A general conclusion may be drawn here: To address questions regarding learning ability, such as

the question of its correlates, and its dimensionality, it is important to have a clear idea of exactly what

is meant by learning ability, to the point of being able to specify learning indicators. Problems and

confusions such as those introduced by Woodrow could have been resolved by selecting learning

indicators from an agreed-upon taxonomy of learning skills'.

'For the purposes of this paper we distinguish learning abilities from learning skills. We define
abil'des as individual-difference dimensions in a factor analysis of learning tasks. We define skills as
candidate individual-difference dimensions which are presently only conceptually distinct. In this way,
we believe that proposing learning skills is logically prior to establishing the individual differences
dimensions underlying learning. Proposing a learning skills taxonomy should assist in determining the
dimensions of learning ability. We realize that our use of the terms abilities and skills may be
somewhat idiosyncratic.

_ . ..N" • " °"-F, ,L. •••,', " "',•• ,• •,, •t' ,".,L• "•."" .. "-_.*•".",,_• *"' .. -'."•,; '•'••.."_."•"•" ._• -_ _.•.." -.-. ,..- -.-.. _ •_,-,.



Indeed. there are many potential benefits to having a widely accepted taxonomy of learning skills.

Consider Bloom's (1956) Taronomy of Educational Objectives. Its primary purpose was to serve as an

aid, especially to teachers, for considering a wider range of potential instructional goals and for

considering means for evaluating student achievement consistent with those goals. Although the

taxonomy has been criticized for vagueness (Ennis, 1986), it has served teachers well over the last 30

years, at least as demonstrated by its continued inclusion in teacher training curricula. Its main effect

has probably been to encourage instructing and testing of higher-order thinking skills (analysi%,

synthesis, evaluation). A taxonomy of learning skills could have a parallel effect in encouraging the I
development of instructional objectives concerned with teaching higher-order learning skills.

Fleishman and Ouaintance (1984) have outlined a number of ways, both scientific and practical, in

which a performance taxonomy in psychology would be beneficial. The main scientific benefit would

be that results from different studies using differing methods could more easily be compared and

synthesized. Study A finds that some manipulation drastically affects performance on task X whereas

study B finds that the same manipulation has no effect on performance of task Y. Are the studies

contradictory or compatible? A taxonomy could help one decide.

The main practical benefit of having a taxonomy of learning skills is that consumers of research

findings could more easily determine the limits of generalizability from current research findings to an

immediate practical problem. For example, it would be convenient to be able to produce learnability

metrics for any kind of learning task, either in the classroom (e.g., a particular algebra curriculum) or

outside thbe classroom (e.g., a new word processing system). A taxonomy of learning skills would be an

important first step toward achieving a generally useful learnability metric system.

There are Aso more specific motivations for the immediate development of a taxonomy of learning

skills. The National Assessment of Educational Progress is a biennial survey of student achievement in

areas such as mathematics, sience, and computer science, designed to provide information to

2".



Congress, school officials, and other policy makers regarding tho state of American education. In

recent years there has been increasing attention given to the assessment of higher-order skills in these

subject areas (e.g., Frcderickscn & Pine, in press). It is likely that, due to political pressures. this effort

will continue with or without a taxonomy, but a taxonomy of learning skills could assist in the

development of new, more refined test items to measure learning skills relevant to math and science.

Perhaps the most conspicuous benefits of having a viable taxonomy of learning skills would N.

realized in the burgeoning domain of intelligent computerized tutoring systems (i1Ss). A number of

such systems have been developed (Yazdani, 1986), and the potential for generalizing and synthesizing

results across the different systems is seen as increasingly critical (Soloway & Littman, 1986). Too

often, researchers caught up in the excitement of developing powerful, innovative instructional systems

have neither the interest nor the expertise for systematically evaluating those systems. There have been

a few small-scale evaluation studies of global outcomes (e.g., Anderson, Boyle, & Reiser, 1985), but the

field could obviously bencfit from an accepted taxonomy. System devclopes could sate what kitsds of

learning skills were being developed, and evaluators could determine the degree of success achieved.

In this way, a taxonomy could provide a useful metric by which to compare and evaluate tutors as to

their relative effectiveness, not only in teaching the stipulated subject matter but also in promoting

more general learning skills.

The intelligent tutoring system context is a natural beneficiary of a learning taxonomy in a second

way. Because of the precision with which instructional objectives may be stated, the degree of tutorial

control over how these objectives guide instructional decisions, and the precision with which student

learning may be assessed, the ITS environment enables the examination of issues on the nature of

learning that were simply not addressable in the past. Educational research has been plagued with

noisy data, due to the very nature of field research and the inherent lack of control over the way

instructional treatments are administered and learning outcomes measured. The controlled ITS

environment thus offers new promise as the ideal testbed for evaluating fundamental issucs in learning.

With ITSs, we now have the capability of generating rich descriptions of an individual learner's progress

N.,
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during instruction. A taxonomy should help in determining exactly what indicators of learning progress

and learner status we ought to be producing and examining. So, a test of the utility of any learning

taxonomy is whether it could Iv used to actually assist in such an endeavor. Our goal for this chapter is

to propose such a taxonomy. We begin by looking at what has been done thus far.

11. A TAXONOMY OF LEARNING TAXONOMIES - N

Various approaches to the development of learning taxonomies have be.en employed. One way of ,,N

organiing these approaches, which we apply here, is by the categories of (a) designated/rational,

based on a couditions-of-learni% analysis; (b) cntpirical-correlattonal, based on an individual

differences analysis; and (c) model-based, from formal computer simulations of learning processes. V

Designated/Rational Taxonomies

Designated/rational taxonomies are by far the most common. Examples of this type are

taxonomies )ro.,posad by Bloom (19M6), (Gagne (1965; 1985), Jensen (1967), and Melton (19•4).

Prolposd taxonomies are based on a speculative, rational analysis of the domain, and frequently, the

analysis applied is of a conditions.of-learning nature. That is, the proposer defines task categories in ,'"

terms of characteristics that will foster or inhibit learning or performance.

One of the first attempts to organize the varieties of learning was Melton's (1964) proposal of a

simple taxonomy based primarily on clusters of tasks investigated by groups of researchers. The.,

categories, roughly ordered by the complexity of the learning act, were conditioning, rote faming,

pn)babili, learaming, skill learning, coneepi learning, and problem solvMng. This general scheme was

updated by Estes (1982). who examined conditions that facilitated and inhibited these and related

classes of learning, and looked for evidence of individual differences in each class. '",

A task-baed scheme was also the basis for learning taxonomies p)roposcd by Jensen (1%7) and

Gagne (1965; 1985). Jensen proposed a three-faceted taxonomy: a Learning-type facet incorporated

Melton's seven categories; a l'P'ocedurrs facet indicated variables such as the pacing of the task, stage of

-%0
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lear•ing, whether the task consis' tel of sparced or massed practice, and the lik.; and a Conenti/Moda/i..

facet indicated whether the task consisted of verbal. numerical. or spatial stimuli. Jensen proposed that

his taxonomy could be used as an aid in interpreting sonic research findings, such as why arbitrarily P

selected learning tasks do not intercurrclatc very highly (answert because they do not share any facet

values), lie hoped that his taxonomy would suggest a more systenmatic approach to selecting lcar ning

tasks for future studies, but there is not much evidence that researchers have subsequently followed his

suggestions.

(agne's taxonomy (1965: 1985), on the tther hand. has been widely taught and put to use in the

area of instructional design (Gagne & Briggs, 1979). Gagne prolpoes five major categories of learned

capabilities bawd on a rational analysis of comnmon performance• characteristics. Intellccfal skills

(procedural knowledge.) reflect the ability to use rules; this capability in t"rn depends on the ability to '2''
'4 V

make discriminations and to use concepts, and the rules themselves combine to form higher-order

rules and procedures. Coritive s m.vgi.es (executive control processes) reflect the ability to govern

one's own learning and lkerformance processes. Ve'bal information reflects the ability to recall and use

labels, facts, and whole btkiies of knowledge. Aoi&-skills and Atiaudes are two additional learned

capabilities (Cagne included to round out the list.

These categories serve various purfKxscs. They assist the investigator in defining and analysing

instructional objectives during task analysis, and later, in evaluating an instructional system to

dctcrmnine whether its objectives have been met. For example, if the goal is to have the student acquire _i

a conceptual skill, then the objective that the student be able it "discriminate" one thing from another .'?

ruav he indicated. L, the design phase, the categories suggest different approaches for delivering

instruction, since, according to Gagne, the five capabilities differ as to the conditions most favorable for

their learning. For example, with verbal information, order is not important but providing a

meaningful context is: for motor skills, providing intensive practice on part skills is critical.

All of these taxonoaiic systeils--(;;agne's in particular--are beneficial. but it is iinportant to

acknowledge their limitations. One problem inherent in the rational approach is the degree to which it

%--S.•
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is subject to imprecision, which makes for communication difficulties and violates one of the main

motivations for developing the taxonomy in the first place. Without a strong model of learning

requirements in a task, and without a foundation of empirical relationships, task analysis is still

primarily an art rather than a technology.

A second major problem with the rational approach was apparent to Melton (1964, 1967), who, in

fact, argu-d thzt it should be abandoned. The problem is that a taxonomic scheme based primarily on

a rational analysis of task characteristics will only incidentally include actual psychoiogical process

dimensions. And presumably the process dimensions are what govern the most important aspect of the

taxonomy: information regarding predicted task-to-task generality. Melton suggested that while the

task-based approach might be initially useful, it was preferable ultimately to base the taxonomy on

process characteristics rather than "a mish-mash of procedural and topographic (i.e., perceptual, motor,

verbal, 'centraJ') criteria" (p. 336). Although it was preliminary at that time to have actually suggested

replacements to the task-based categories, we will show later how cognitive science now provides

sggestions for what they might be 3

Empiuical-Correlational Taronomies

A second approach, less commonly used in the domain oi learning skills, has been primarily

empirical. The history of individual differenc.s research can be seen largely as an attempt to develop

taxonomies of intelligence tests based on performance correlations (e.g., Thurstone, 1938), and there

have been some attempts to develop similar taxonomies of learning tasks (e.g., Allison, 1960; Malmi,

Underwood, & Carroll, 1979; Stake, 1961; Underwood, Boruch, & Malm,, 1978).

The empirical-correlational approach has one critical advantage over the rational approach as a

means for taxonomy development: It directly addresses the issue of the transferability of skills among

tasks. That is, if we know that performance on learning task X is highly correlated with performance

'It is historically interesting that it was at Melton's (1964) conference that Fitts (1964) proposed a
highly process-oriented taxonomy of psychomotor skills which was only much later adapted by
Anderson (1983) as the basis for a cognitive learning tbcory.

,62
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on task Y, then a natural proposal is that a high proportion of the skills task X requires are also I

required by task Y. Further, training on task X should transfer at least somewhat to task Y. Thus, No

patterns of correlations among performances on learning tasks could, in principle, be the basis for the

construction of a taxonomy of learning skills.

A very closely related idea--that individual differences investigations could serve as tesibeds in

constructing general theories of learning--was dcveloped by Underwood (1975). His proposal was that

if a theory assumed some mechanism, and the mechanism could be measured in a context outside that

in which it was initially developed, then the viability of the mechanism could be tested by correlational

analysis.

These ideas were applied in an ambitious investigation that examined the intercorrelations among a

wide variety of verbal memory tests (Underwood et al, 1978). The purpose was to determine whether ? 4

theoretical notions developed in the general (nomothetic) learning literature, such as the idea that

memories have imaginal and acoustic attributes, or that recognition processes are distinct from recall

processes, could be verified with an individual differences analysis.

The memory task stimuli were primarily words. In some tasks, words were randomly selected, but

in others, words were chosen to elicit particular psychological processes. For example, concrete and

abstract words were mixed, under the assumption that recall differences would reflect the degree of

imagery involvement. Words were embedded in various kinds of memory tasks (paired-associates, free
IY

recall, serial learning, memory span, frequency judgment). It was expected that clear word-attribute ,

factors would emerge, thus supporting certain theoretical notions regarding properties of memory, but .4

Underwood and colleagues discovered two somewhat unanticipated results. First, most of the variance

was due to general individual differences in associative learning;, only a small percentage was due to any

subject-by-task interaction. Second, the two factors that did emerge were not associated with word ...

attributes, as might have been expected, but with type of task (free recall vs. paired-associates and

serial learning); but even this apparently was not a robust task division. A followup study (Malmi et at., :'-Z-

7



1979) found the same evidence for a general associative-learning factor, but the two extracted factors

split tasks in a slightly different way (free-recall and serial learning vs. paired-associates).

What is the implication for a taxonomy ot learning skills? Association formation rate apparently is

a general, and perhaps fundamental, learning parameter. It may be that further subtle distinctions

could be made among types of association formation, but the evidence in both these studies suggests

little practical payoff in searching for such distinctions.

Underwood and colleagues were primarily interested in memory per se; thus, their tasks

represented a fairly narrow range of learning. A useful complement to their analysis would be a study

that more systematically sampled learning tasks from something like Melton's or Gagne's taxonomy. In

this regard, we consider a pair of studies by Allison (1960) and Stake (1961), who administered a

diverse variety of learning tasks to large samples of Navy recruits and seventh-graders, respectively.

Allison's learning tasks were four paired-associates tasks (verbal, spatial, auditory, and haptic stimuli),

four concept formation tasks (spntial and verbal stimuli), two mechanical assembly tasks consisting of a

short study film followed by an assembly test, a maze tracing task; a standard rotary pursuit task, and a

task that involved learning how to plot quickly on a polar coordinates grid. Stake's learning tasks were

listening comprehension (repeated study-test trials of the same story), free recall (words, numbers),

paired-associates (words, dot patterns, shapes, numbers), verbal concept formation, and maze learning.

In both studies a variety of aptitude tests were also administered.

The original analyses of these data were somewhat problematic (see Cronbach & Snow, 1977), but

a reanalysis conducted by Snow et al. (1984) using multidimensional scaling (MDS) revealed a number

of dimensions by which the learning tasks could be organized. 'First, in both studies, learning tasks

varied systematically in complexity. This was indicated by two findings: The learning task- varied

substantially (a) in the degree to which performance on them correlated with measures of general

intellectual ability, and (b) in how dose to the center of the multidimensional scaling configuration they

appeared. Centrality reflects the average correlation of a test with other tests in the battery and may be

taken as a measure of complexity (Marshalek, Lohman, & Snow, 1983; Tversky & Hutchins, 1986).

8



Snow et al, suggested that the complexity relationship could be due either to some tasks

subsuming others in terms of process requirements or to increased involvement of executive control "

processes such as goal monitoring.

Second, in both analyses, there was evidence for a novel vs. familiar learning task dimension, which

Snow et al. (1984) interpreted as supporting the classical distinction between fluid and crystallized N.

intelligence (Cattell, 1971), but which might also be seen as supporting an inductive vs. rote learning

distinction. In the Allison analysis, the paired-associates tasks and some of the concept formation tasks -'

appeared on one side of the scaling configuration. The concept formation tasks so positioned were

those which repeatedly used the same stimuli, thus enabling the successful use of a purely rote strategy.

On the other hand, the assembly tasks and the novel plotting task, which required subjects to assemble p

a new solution procedure essentially from scratch, appeared on the opposite side of the configuration.

The MDS analysis of the Stake (1961) data (learning rate scores) similarly suggested a

fluid/inductive vs. crystallized/rote dimension. Listening comprehension, verbal paired-associates, and

verbal free recall tasks appeared on the crystallized side of the configuration. The verbal concept

formation task--along with the spatial and number pattern paired-associates tasks, which were partially ,/

amenable to an inductive leaming strategy (response patterns could, but did not have to be induced)--

fell on the fluid/inductive learning end.

The Snow et al. (1984) reanalysis thus provides a number of ideas that could facilitate taxonomy

development. In particular, it suggests task complexity and learning enviwomment (inductive/novel vs. ,

rote/familiar) dimensions. Does this suggest we ought to continue along these lines to develop a full

taxonomy? Unfortunately, we see two problems with the approach. One is simply practicality.

Because of the time and expense involved in collecting data on performance of learning tasks, which

typically require many more subject hours than do other cognitive measures, there have not been the

same kind of large-scale empirical analyses of learning task batteries as there have been of intelligence

test batte:ries (although data sets reviewed in Glaser (1967) and Cronbach & Snow (1977) could be

reanalyzed along the lines of the Snow et al. approach. Even with the well-designed studies Snow et al.
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reanalyzed, there is considerable under-determination of process dimensions, due to the fact that not

enough varieties of learning tasks were (or could have been) administered by Allison (1960) and Stake

(1961). Thus, although the dimensions refa!'•'ed in the Snow et al. reanalysis are suggestive, they

certainly do not seem a sufficient basis for proposing a taxonomy of learning skills. It might take more

like a few hundred diverse learning tasks to be able to see something that might serve as the basis for a -

true full-blown taxonomy. Obviously, such a study would be prohibitively expensive.

A second problem with the empirical-correlational approach to taxonomy building is one inherent

in a purely bottom-up approach to theory development. That is, on what basis should learning tasks be

selected for inclusion in a to-be-analyzed battery in the first place? Factor-correlational structures or

categories directly reflect the nature of the tasks included in the analysis.-and only those tasks; thus, the

empirical approach is inherently analytic and, in some. sense, conservative. Correlational analyses

certainly may be useful for initial forays, or purely exploratory work, in suggesting underlying task

relationships that might not have been anticipated at the outset. But it cannot be complete in any

-nse. One cannot simply be sure to "sample a broad range of tasks." A sampling scheme for choosing ':

tasks already implies a taxonomy. Clearly, some means for generating original taxonomic categories is

required.

Information Processing Model-Based Taxonomies

The two classes of learning taxonomies thus far discussed have their roots in schools of thought--

behaviorism in the case of rational taxonomies, psychometrics in the case of the empirical-correlational

taxonomies--that are historically prior to modern cognitive psychology. One unfortunate side-effect of i i
the cognitive revolution had been a decline of interest in learning phenomena. Until the mid-1960s,

when behaviorism was still largely predominant, learning issues held center stage. With the subsequent

rise of cognitive psychology and the information processing perspective, theories of memory and 1. 44

performance camc to dominate. Only recently has there been a rather sudden and dramatic upsurge of
I

interest in learning from an information processing perspective. Although many of the same issues

remain, these second looks at learning through newer theories (e.g., Anderson, 1983; Rosenbloom &

1o
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Newell, 1986; Rumelhart & Norman, 1981) have resulted in a richer theoretical picture of learning

phenomena. Mix

Corresponding to this rise of interest in learning, there have been proposals for model-based

categories or taxonomies of learning types. These attempts differ from the empirically based individual

differences taxonomies in that they have not yet been completely validated, at least not as taxonomies

of learning skills. However, we do see a correspondence between some of the dimensions that have

emerged in the individual differences analyses and some of the proposed learning mechanisms and N

categories, which we will point out as we go along. The model-based taxonomies differ also from the

rational taxonomies in that they arise not simply from speculation and rational task analysis (although

they certainly incorporate such methods) but from systematic information processing models of

learning that have been demonstrated to be specified to a degree of precision sufficient for

implementation as operational computer programs. Thus, taxonomies in this category are those

investigations that have entailed the use of computer simulation of learning processes as a means of

developing learning theory.

One modc•-based taxonomy is suggested by Anderson's (1983) ACT' theory. The theory proposes

two fundamental forms of knowledge. Procedural knowledge (knowledge how) is represented in the

form of a production system, a set of if-then rules presumed to control the flow of thought. Declarative

knowledge (knowledge that) is represented in the form of a node-link network of propositions, which

are presumed to embody the content of thought.

The ACT" theory in its most recent formulation (Anderson, 1983; 1987a) specifies three basic types

of learning: one to accommodate declarative (fact) learning, one specific to procedural learning, and

one applicable to both types. Learning in declarative memory is accomplished solely by the

probabilistic transfer to long-term memory of any new proposition (that is, a set of related nodes and

links) that happens to be active in working memory. It is worth noting that Underwood et al.'s (1978)

finding of a broad and general associative learning factor lends empirical support to Anderson's claim

for a single declarative learning mechanism.

11

%



A second learning mechanism, knowledge compilation, accounts for procedural learning.

Knowledge compilation actually consists of two related processes. Learning by composition is the

collapsing of sequentially applied productions into one larger production. This corresponds to the

transition from step-by-step execution of some skill to "one-pass" or all-at-once execution. Learning by

proceduralization is a related process in which a production becomes specialized for use in a particular

task. This corresponds to the transition from the use of general problem-solving skills on novel

problems to the employment of specialized, task-specific skills tuned to the particular problem at hand.

Anderson's third learning mechanism, strengthening, operates somewhat analogously to tne traditional

learning principle of reinforcement. Both facts and procedures are presumed to get stronger, and

hence more easily and more reliably retrieved, as a function of repeated practice.

To appreciate Anderson's theory, it is important to note that it models the dynamics of skill

transition, and is not simply a list of the different ways in which learning can occur or a categorization

of learning tasks. The basic idea is that upon initial exposure to novel material, such as a geometry or

computer programming lesson, the learner first engages in declarative learning, forming traces of the

various ideas presented. Then, when given problems to solve later in the lesson, the learner employs

very general methods such as analogy, random search, or means-ends analysis, which operate on the

declarative traces to achieve solution. Employing these very gcneral methods is cognitively taxing in

that it severely strains working memory (to keep track of goals and the relevant traces), and thus initial

problem solving is slow and halting. But portions of the process of using these general methods and

achieving particular outcomes (some of which actually lead closer to solution) are automatically

compiled while they are being executed. This is the procedural learning component. The learner

essentially remembers the sequence of steps associated with solving a particular problem, or at least

parts of the problem. Then when confronted with the problem again at some point in the future, the

learner can simply recall that sequence from memory, rather than have to rethink the steps from

scratch. With practice on similar problems, the compiled procedure is strengthened, which produces

more reliable and faster problem solving. With continued practice, the skill ultimately is automatized,

12



in that it becomes possible to execute the skill without conscious awareness and without drawing on

working memory resources..

Again, there may be a correspondence between an empirically based individual difference

dimension and a distinction implicit in the model-based taxonomy. Snow et al.'s novel learning tasks,

presumed to tap fluid intelligence, may be likened to Anderson's novel learning situations, which

presumably tap very general problem-solving skill. On the other side, Snow et al.'s familiar learning

tasks, which call on crystallized skills, can be characterized in ACT* terms as engaging the declarative

learning mechanism or involving the retrieval of already-rompiled procedures. It is noteworthy that

despite rather major differences in methodology inherent in the individual differences vs. model-based

approaches, there is some convergence in the categories of learning skills. Although Anderson (1983;

1987) views the emergence of the learning dimension as the result of the transition of skill, rather than

perhaps as an array of fundamentally different kinds of learning tasks, there is a basic compatibility

between the conclusions of the research approaches.

A second approach to building a model-based taxonomy is based on an integration of the literature

from the Artificial Intelligence subspecialty of machine learning. Taxonomies of research in machine

learning (Carbonell, Michalski, & Mitchell, 1983; Langley, 1986; Michalski, 1986; Self, 1986) have been I', -

proposed, and there even exists something of a consensus in the field regarding the categories in the hh

taxonomy.
I.

One dimension of machine learning research particularly relevant to our concerns here is leamring

strate,, which Michalski (1986) defines as the type of inference employed during learning, and which he

characterizes as follows: " '-

In every learning situation, the learner transforms information provided by a teacher (or
environment) into some new form in which it is stored for future use. The nature of this
transformation determines the type of learning strategy used....Theme strategies are
ordered by the increasing complexity of the transformation (inference) from the
information initially provided to the knowledge ultimately required. Their order thus
reflects increasing effort on the part of the student and correspondingly decreasing effort S
on the part of the teacher. (p. 14)

1 3 I - . -
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It is interesting that the clasifica'tion of machine learning research yields such a nice process

classification and thereby seems promising as a realization of Melton's ultimate hopes for a taxonomy

of learning. The kinds of inferencing strategies CarboneU ct al. and Michalski suggest are listed in

Table 1. (We have added an additional category, Learning by Drill & Practice, to the list, because we

use the list as the basis for one of our proposed taxonomy categories, and it is convenient to denote

that here.) Note that while there may be some similarity between Carbonell et al. and Michalskis

categories and those proposed by Melton, Gagne, and others, the basic difference is the fact that in the

CarboneU-Michalski system, the underlying motivation for distinctions is necessarily the existence of

differences in cognitive processing requirements. We will return to a more thorough discussion of

these categories in the next section.

We believe that Anderson's (1983) and Carbonell-Michalski's (1983; 1986) model-based attempts to ,'

propose varieties of learning represent an advance beyond either the rational or empirically based

taxonomies and go a long way toward abating some of the most severe criticisms of earlier taxonomies.

Yet all three approaches yield ideas on the varieties of learning skills that might be fruitfully

synthesized. The remainder of this paper represents our initial attempt to integrate these ideas.

III. A PROPOSED TAXONOMY OF LEARNING

Thus far we have discussed why a taxonomy of learning is important, and what ethers have done in

the way of proposing taxonomies. Our goal for this section of the paper is to propose a taxonomy

based on a synthesis of some of the ideas just reviewed, with an eye toward two major objectives. First,

the taxonomy should be useful as a learning task analysis system. That is, it should be useful in -U
answering questions like: What are the component skills involved in learning to disassemble a jet

engine, or operate a camera, or program a computer, or make economic forecasts? Second, the

taxonomy should serve to focus our research. Specifying the ways people learn may suggest where we

ought to be expending more research energy. We do not see this as dictating research directions, as

some critics of psychological taxonomies have suggested (Martin, 1986), but as suggesting potentially

high-payoff research directions. For example, we already know much about declarative learning, such I"
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Table 1. Learning Strategies From a Taxonomy of Machine Learning Research

Rote Learning: Learning by direct memorization of facts without generalization.

Larning from Instruction: The process of transforming and integrating instructions from an external

source (such as a teacher) into an internally usable form.

Learning by Deduction

Knowledge Compilation:Translating knowledge from a declarative form that cannot be used
directly into an effective procedural form; for example, converting the advice "Don't get wet*
into specific instructions that recommend how to avoid getting wet in a given situation.

Caching: Storing the answer to frequently occurring questions (problems) in order to avoid a
replication of past efforts.

Chunking: Grouping lower-level descriptions (patterns, operators, goals) into higher-level
descriptions.

Creating Macro-Operators (Composition): An operator composed of a sequence of more
primitive operators. Appropriate macro-operators can simpfify problem solving by allowing
a more *coarse-grained" problem-solving search.

Learning by Drill and Practice: Refining or tuning knowledge (or skill) by repeatedly using it in
various contexts, allowing it to strengthen and become more reliable through generalization and
Specialization.

Inductive Learning: Learning by drawing inductive inferences from facts and observations obtained
from a teacher or an environment.

Learning by Analogy: Mapping information from a known object or process to a less know but
similar one.

Learning from Examples: Inferring a general Concept Description from examples and (optionally)
counterexamples of that concept.

Learning from Observatlom & Discovery: Constructing descriptions, hypotheses, or theories about a
given collection of facts or observations. In this form of learning there is no a priori classification
of observations into sets exemplifying desired concepts. t

Note. All categories except Deductive Learning (Michalski, 1986) are from Carbonell et al. (1983).
The definitions are taken from the glossary in Michalski, Carbonell, and Mitchell (1986). Learning by
Drill and Practice was not a category included in thcsc sources, but we included it in the taxonomy and
thus, for economy, we describe it here.
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as what kinds of individual differences to expect and its relation to other cognitive skills. We know

considerably less about procedural learning skills. The taxonomy may pinpoint other learning skills on

which rescarch attention may productively be focused.

We have selected four dimensions, illustrated in Figure 1, as particularly important in classifying

learning skills. The two dimensions shown in Figure la--knowledge type and instructional

environment--are motivated primarily by our discussion of the Anderson and Carbonell-Michalski

systems, respectively, although Gagne's ideas on learned capabilities served to broaden the range of

categories included in knowledge type. The crossing of these two dimensions (Figure la) defines a

space of general learning tasks.

The motivation for the other two dimensions, illustrated in Figures Ib and le-.domain and learning Style-- .

became apparent when we began examining applications of the taxonomy, which we discuss in the next

section of the paper. FiAwe lb illustrates a hypothetical d• aia-space as the cxossing of the deWre of

quantitativeness and the importance of quality vs. speed in decision making. The idea is that any

domain can be located in such a space, and that the set of learning skills defined by the first two

taxonomy dimensions (Figure Ii) may prove to be empirically distinct from parallel learning skills in

other domains. We represent this idea in Figure lb by scattering knowledge type by instructional

environment matrices over the domain space, for various occupational-training domains. The two

dimensions portrayedi in the, domain space are only suggestive, and are meant only to express how

domain interacts with the first two taxonomy dimensions. Finally, Figure Ic lists a variety of possible

learning styles, which, we propose, must be considered in conjunction with the first three taxonomy

dimensions in determining what skills are being tapped by a particular learning task.

Knowledge Type

The declarative-procedural distinction is fundamental. Further rcrtnemcnts are possible;

declarative knowledge can be arrayed by complexity, from propositional knowledge to schemata

(packets of related propositions). Similarly, procedural knowledge can be arrayed from simple
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productions, to skilLs (packets of productions that go toge•ther), to automatic skills (skills executed with

minimal cognitive attention). Productions and skills can also be arrayed by generality, from a narrow

(specific) to a broad (general) range of applicability. A final knowledge type is the mental model 4

which requires the concerted exercise of multiple skills applied to elaborate schemata. Knowledge

types are dynamically linked: Acquisition of a set of propositions may be prerequisite to acquisition of

a related schema, or to a proccdurai skill; both in turn may be prerequisite to acquisition of some n

mental model. ,

In cognitive science circles, the declarative-procedural distinction is sometimes said to be formally

problematic in that declarative knowledge can be mimicked by procedures (Winograd, 1975). One can

dcclaratively know that "Washington was the first president'; alternatively, one can have the procedure

to respond "Washington" when asked "Who was the first president?" We finesse the problem here by

keeping close to an operational definition of knowledge type: We define knowledge in terms of how it

is tested. Declarative knowledge can be probed with a fact recognition test (sentence recognition, word

matching. etc.), or in the case of schemata, with clustering and sorting tasks (e.g., Chi. Feltovich, &

Glaser, 1981). Procedural knowledge requires a demonstration of the ability to apply the knowledge to

predict the output of some operator (operator tracing) or to generate a set of operators to yield some

output pattern (operator selection). Possession of skills and automatic procedures may be

operationally determined by examining the degree of performance decrement under imposition of

secondary tasks (Wicken., Sandry, & Vidulich, 1983) or through other methods of increasing

processing demands (Schneider & Shiffrin, 1977; Shiffrin & Schneider, 1977; Spelke. Hirst, & Neisxer,

1976). Possession of an appropriate mental model might require testing performance on a complex

simulation of some target task. An illustrative (not exhaustive) list of tests for the various knowledge

types is given in Table 2.

Instructional Environment %

Instruction delivered in a classroom setting or even on a computer will inevitably provide the

student with opportunities to incorporate the material in multiple ways. Real instruction occurs in a
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Table 2. Samnple Temst for ite Iarious Knowledge Types (from the Domnain of Logic

Gate Circuits)

Knowledge Type 'Type of Test Samplc Item

Proposltion Seten(ce Verificaion "AND yields I ligh if all inputs are high, Low
otherwise-True or False'?"

Stimulus Matching "AND D--Match or Mismatch?"
Paired-assodates "Which symbol is associated with AND?"
Free Recall (cornponenrs) "What are the different types of logic gates?"

Scherna Free Recall (stnicture) "Reproduce the circuits you just studied"
Sorting "Sort the circuits into categories"
Classification "Pair circuit diagrams with these devices"Sentence Complcti~m/C oio: n "AND yields -... if all .--- are ..... "

I.e.rical Derision "XAND is a legal logic gate-True or False?"

Rule Operator rracing -Determine output of logic gato
(AND, HIGH, LOW)

Operator .ql-clion .Ch0%se an o!erator to achieve. a result
('?, iii1H, LOW) - ;1H61.1

(Generul Rule Tman vfirr.o. Training -Learn and be. tested on other kinds of logical
rclatioits such as those introduced in symbolic logic

Skill Multiple opemaow
Tracing/Selection -Trace through (or select) a series of linked logic

gates in a circuit (could also use hierarchical mcnus
mcthodoly•W)

General Skill Trunsmfem'of-T.Taining -Learn and be tested on constructing or verifying
logical proofs

Automlatlc Skill Dual-task -Trace logic gates while monitoring a secondary
signal

CQwnpteity-increaLse -Trace logic gates that become increasingly
comtplex ,,

Mental Model Process Outcoenwe"
Prediction -Troubleshoot a Simulated Target Task; Walk- p

Through Performance Test

9
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diverse environment from the standpoint of student vs. teacher control and consequently in the kinds of .

inferences students are required to make. Even in the lecture environment, students may engage a

variety of inferencing strategies. Nevertheless, it is useful to differentiate instructional environments in

a local sense: It should be possible to tag a specific instruction segment as to the form in which it is

delivered and the kinds of inference processes or learning strategies it is likely to invoke. Following

Carbonell et al. and Michalski (Table 1), we propose to characterize local instructional environments

according to the amount of student control in the learning process. At one end, rote learning (e.g., I

memorizing the times table) involves full teacher control, little student control. Didactic learning (by

textbook or lecture), learning by doing through practice and knowledgc compilation, learning by

analogy, learning from examples, and learning by observation and discovery, offer successively more

student control, and less teacher control.

Note that we modify the Carbonell-Michalski list slightly by combining their learning by deduction

(compilation) category with a learning by refinement category (suggested to us by W. Regian, personal

communication, May 4, 19W'). What we are pinpointing is the ability to refine one's skill (by

strengthenirig, generalization, and discrimination) based on feedback following performance. Before

one is engaged in this kind of learning, we a& "me the skill has already been acquired (perhaps in a
rote fashion) and compiled, and is now at the phase of being refined. But because compilation and

refinement are probably hopelessly intertwined in actual learning coi'texts, we combine them into a 'PS

.ingle learning-by-doing (Practice environment) category.

Domain (Subject Matter)

A j
The inclusion of subject matter as a taxonomy dimension reflects the fact that much of learning has

a strong domain-specific character. One can be an expert learner in one domain and a poor learner in A

another. Certainly there is some generality in learning skills over domains. Glaser, Lesgold, and

Lajoie (in press) suggested that metacognitive skills might be fairly generalized. But even here, there is I

not much evidence that metacognitil'e skill in mathematics (Schoenfeld, 1985) predicts metacognitive

skill in writing (Hayes & Flower, 1980).
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It is appropriate to ask the question of the topic range over which some general learning skill is p

likely to be useful. It may be that the degree to which a subject matter taps quantitative or technical

knowledge, and the degree to which it taps verbal knowledge, captures some of the transfer relations

among academic subjects. The degree of social involvement may also play a role, especially when one

considers the universe of occupational training courses rather than simply academic training. As is

suggested in Figure 1b, it may be that the relative importance of speed vs. quality in decision-making
may be a critical domain dimension. But again, the dimensions portrayed in Figure lb are only meant

to be suggestive.

Mare generally, we envision a complete domain-space. The underlying dimensionality of such a

space could be discovered through a study of the similarity (either judged or as shown in transfer of

performance relations) among all jobs, courses, or learning experiences in any specifiable universe of

interest, and could be represented as a multidimensional scaling of the jobs or courses so rated. An V

empirically determined domain-space would specify the likelihood that (or the degree to which) a

particular taxonomic skill, defined by the environment and the knowledge type, would transfer to or be

predictive of a parallel skill (i.e., one defined by the same environment and knowledge type) in another

domain. Proximal domains, in the multidimensional space, would yield high transfer among parallel

skills; distal domains might yield only minimal transfer. For example, assuming the importance of the 0

quantitative dimension, skill in learning mathematics propositions through didactic instruction might J.

predict skill in learning physics propositions through instruction; but neither may be related to the p.

ability to learn history propositions through instruction. _

Learning Style

All sorts of subject characteristics--aptitudcs, personality traits, background experiences--affect

what is learned in an instructional setting. But we focus on characteristics of the learner's preferred

mode of processing, or learning style, because our primary concern is characteristics over which the

instructional designer may exercise control. Because style implies a choice by subjects as to how to

orient themselves toward the learning experience, it should be manipulable through instruction. ..
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A considerable literature on cognitive style exists (Messick, 1986). Among those that have received

the most attention are field dependence-independence (Goodenough, 1976) and cognitive complexity

(Linville, 1982), but these are now p', 'imed primarily to reflect ability (e.g., Cronbach & Snow, 1977;

Linn & Kyllonen, 1981). Impldsivity-reflectivity (Baron, Badgio, & Gaskins, 1986; Meichenbaum,

1977) more clearly fits our criteria for inclusion in the taxonomy, in that it is malleable: Subjects can be -

trained to be more reflective in problem solving, and this improves performance. Other styles we

consider in our analyses of learning environments are holistic vs. serial processing, activity level,

systematicity and exploratoriness, theory-driven vs. data-driven approaches, spatial vs. verbal

representation of relations (Perrig & Kintsch, 1984), superficial vs. deep processing, and low vs. high

internal motivation. Some dimensions may affect learning outcomes quantitatively. Active students

may learn more. Others may affect outcomes qualitatively. Spatial vs. verbal representations will result

in different relationships learned.

Cognitive style may interact with other taxonomy dimensions in determining what learning skill is

being tapped in instruction. A study by Pask and Scott (1972), which identified holist vs. serialist

processing styles, can illustrate this interaction. In this study, serialists, who focus on low-order

relations and remi, mber information in lists, were contrasted with holists, who focus on high-order

relations and remember the overall organization among items to be learned. Pask and Scott showed

that presenting a learning task (i.e., learning an artificial taxonomic structure) in a way that matched

the learner's style resulted in better overall learning. A critical point for this discussion is that the

presentation of material should tap different skills for subjects who differ on this style dimension.

Presenting a long list of principles may be a difficult memory task for serialists, who attempt to

memorize each relationship presented. For holists, the same task may tap conceptual reorganization

skill rather than memorization skill

Summary

The first three dimensions of the taxonomy define a space of learning tasks (Figure la set in the

domain-space of Figure 1b). Each cell represents a task that teaches a particular subject matter (e.g.,
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physics principles: Newton's second law), by a particular means (e.g., by analogy), resulting in a

particular kind of knowledge outcome (e.g., a schema). A particular taxonomic learning skill then may

be defined by performance on a particular taxonomic learning task. T'nere will be interactions among

dimensions: Some subject matters lend themselves more readily to certain kinds of knowledge

outcomes. For example, propositions are emphasized in non-quantitative fields; procedures are the

focus in quantitative fields. And knowledge outcomes covary with instructional method- we more

commonly learn propositions than procedures by rote.

As an illustration of some of these ideas, consider the instructional goal, extracted from a

programming text, of teaching the concept of electric field (Glynn, Britton, Semrud-Clikeman, & Muth,

in press). A rote approach might be to have students simply memorize the definition: "an electric field

is a kind of aura that extends through space." A didactic approach might specify that students read the

definition embedded in the context of a larger lesson, then to have the student demonstrate

understanding by having him or her paraphrase the definition. The difference between the two

approaches could be reflected in the way in which the knowledge was tested. The appropriate rote test

would be verbatim recognition or recall; the appropriate instruction test would be paraphrase

recognition or recall.

The electric field concept could be instructed by having students practice using it; following a

discussion of properties of force, such as how an electrical force holds an electron in orbit around a

proton, students would be given an opportunity to solve problems that made use of the concept. One

could also lead students to induce the concept, by pointing out how it is analogous to a gravitational

field, by providing them with examples and counterexamples, or by having them discover it with a

simulator or in a laboratory.

Unlike the first three dimensions, the fourth dimension--learning style--refers to characteristics of

the person rather than the environment. Inclusion of the learning style dimension is an admission that I

lnterestingly, test-question type has been shown to determine a learner's subsequent processing
strategy (Fredericksen. 1984. Sagerman & Mayer. 1987).
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providing a particular kind of environment guarantees neither the kind of learning experience that will

result nor the kind of learning skill being tapped. Person characteristic by instructional treatment

interactions ey'st (Cronbach & Snow, 1977, especially Chapter 11); thus, as we tried to illustrate in the

example on holist vs. serialist processing, the style engaged at the time of learning and testing will

4 partly determine what learning skill is being measured.

[V. APPLYING THE TAXONOMY: THREE CASE STUDIES

Our goal for this section of the paper is to consider how the learning taxonomy might facilitate the

development of indicators of learning skill in actual practice. We consider this a kind of test run for the

taxonomy. We have proposed a taxonomy;, it is now appropriate to demonstrate how it might be

applied. We discuss three computerized instructional programs, each of which includes some capability

for determining what and how students are learning. We suggest ways in which additional learning

indicators might be generated in light of our taxonomy.

We see the taxonomy playing two roles here. One, though not the focus of the paper, is to help us

classify instructional programs. By our taxonomy, similar programs are ones that teach the same type

of knowledge (propositions, skills, etc.), provide the same instructional environment (rote, discovery,

etc.), teach the same domain material (computer programming, economics, etc.), and encourage the

same kind (style) of learner interaction (reflectivity, holistic processing, etc.). Programs are dissimilar

to the degree that they mismatch on these dimensions. An important part of our discussion of the

three tutoring systems then is to indicate at least informally what learning skills are being ew'rcised,

and to what degree.

The second and (for current purposes) more important role for the taxonomy is to assist us in

thinking more broadly about learning skills and outcomes. The taxonomy with its specified methods

and tests, can pinpoint what potentially important learning events are simply not being measured by

existing instructional programs. We can imagine generating alternative instructional programs by

varying the degree to which different kinds of learning skills are exercised.
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The three programs we discuss in this section are intelligent tutoring systems, and so we begin by

providing a few preliminary remarks on their general organization.

General Comments on Intelligent Tutoring Systems

Figure 2 illustrates the components of a hypothetical and somewhat generic intelligent tutoring

system. In this system, the student learns by solving problems, and a key system task is to generate or

select problems that will serve as good learning experiences.

The system begins by considering what the student already knows (the STUDENT MODEL), what

the student needs to know (the CURRICULUM), and what curriculum element (lesson or skill) ought

to be instructed next (the TEACHING STRATEGY). From these considerations the system selects

(or generates) a problem, then either works out a solution to the problem (with its DOMAIN

EXPERT) or simply retrieves a prepared solution. The program then compares its solution to one the

student has prepared, and performs a diagnosis based on the differences between the solutions.

The program provides feedback, based on STUDENT ADVISOR considerations such as how long

it has been since feedback was last provided, whether the student was already given a particular bit of

advice before, and so forth. After this, the program both updates the student skills model (a record of

what the student knows and does not know) and increments learning progress index counters. These

updating activities modify the STUDENT MODEL, and the entire cycle is repeated, starting with

selecting (or generating) a new problem.

Not all ITSs include all these components, and the problem-test-feedback cycle does not adequately

characterize all systems. But this system fairly describes many existing MTSs and perhaps most ,.-*

interactions with human tutors. Thus, an examination of the components of the generic tutor should

yield some ideas on how learning progress and the current status of the learner may be indicated. Note

that much of this information is contained in the dynamic student model. We now discuss three

instantiations of this generic tutor.
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(1) BIP: Tutoring Basic Programming

General System Description

The Basic Instruction Program (BIP) was developed at Stanford University's Institute for

Mathematical Studies in the Social Sciences and was one of the first operational intelligent tutoring

systems (Barr, Beard, & Atkinson, 1976; Wescourt, Beard, Gould, & Barr, 1977).' BIP teaches

students how to write programs in the language BASIC, by having the student solve problems of

increasing difficulty. The system selects problems according to what the student already knows (based

on past performance), which skills it believes ought to be taught next, and its understanding of the skills

required by the problems in its problem bank.

BIP's architecture is consistent with the generic tutor. BIP's Currculum Information Network

represents all the skills to be taught and the relations among them. Skills are represented quite

narrowly;, for example, "initialize a counter variable" or "print a literal string." The relations specify

whether skills are analogous to other skills, whether they are easier or harder or at the same difficulty

level as other skills, and whether there are any prerequisite skills. As an example, printing a numeric

literal (or constant) is considered conceptually analogous to, but also easier than, printing a string

literal; both are considered easier than printing a numeric variable; and printing a numeric literal is

considered a prerequisite to printing the sum of two numbers.

A programming task is represented in terms of its component skill requirements. For example, a

BIP task might ask the student to compute and print out the number of gifts sent on the 12th day of

Christmas, given that: On the first day 1 gift was sent; on the second day 1 + 2 gifts were sent; on the

third day, 1 + 2 + 3 were sent; and so on. The student is expected to write a program that computes

the sum of 1 + 2 + ... + 12. Based on a task analysis conducted by BIP's authors, BIP knows that the

component skills required for solving this particular problem are initialize numeric variable, use for netl

loop with literal as final value, and so forth. Each task is assumed to tap a number of skills.

'Barr et al. developed BIP-I; Wescourt et al. developed its successor BIP-Il. The two systems are
fairly similar, but we assume the newer system where there are discrepancies.
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BIPs student model is a list of the student's status with respect to each of 93 skills in the

curriculum. There are five discrete status levels: UNSEEN (student has not yet seen a problem that

required the skill), TROUBLE (student has seen but has not solved a problem that required the skill),

MARGINAL (student has learned to a marginal degree), EASY (student has not yet seen but problem

requires an easy skill to learn), and LEARNED (student has learned to a sufficient degree). After

each problem, skill status is updated as a result of the student's self.evaluation and through two %

DOMAIN-EXPERT-like components to BIP: a BASIC interpreter which catches syntax errors, and a

solution evaluator which determines whether the program is producing correct outputs. Finally, BIP

also provides a number of aids to the student. The student may request help, a model solution in

flowchart form, or a series of partial hints.

BIP selects problems by first identifying skills for which the student is ready (ones that do not have

any unlearned prerequisites) but that need work, which means (in order of priority) (a) skills which the

student has found difficult (i.e., from tasks not completed), (b) skills analogous to LEARNED skills, or

(c) skills postrequisite to LEARNED skills. Skills so identified are called NEEDED skills. BIP then

identifies a task with NEEDED skills but no unlearned prerequisites.

If the student successfully solves the selected task. DIP updates the student model by crediting the

associated task skills. If the student fails the problem or gives up (i.e., requests a new task), BIP

determines which skills to blame, according to criteria such as the student's self-evaluation, whether the

student already LEARNED some of the skills or analogous ones, and whether any task skills or

analogous ones are in an unlearned state.

There are a number of ways in which aptitude information guides problem selection. For the fast

learner, if two skills are linked by difficulty (one is harder than the other), the system assumes that the

easier one is not a NEEDED skill; BIP also will select tasks with multiple NEEDED skills. If the

student is consistently having trouble, BIP opts for a blow-moving approach and minimizes the number

of NEEDED skills introduced in a single task.
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4.

Learning Indicators

Snow, Wescourt, and Collins (1986) collected aptitude and other personal data from 29 subjects

who had used BIP, and performed a number of analyses on the relationships among those data and

BIP variables. Table 3 shows the list of learning indicators used by Snow et al, We have divided the

list into three categories: learning progress indices, learning activity variables, and time allocation

variables,

The sample was too small to draw definitive conclusions about relationships, but there were some ,

suggestive findings worthy of further pursuit. First, the best learning progress index seemed to be the

slope of the number of skills acquired over the number of skills possible (skills slope). Determination

of best is based on two considerations: Skills slope was most representative of other learning progress

indices in that it had higher average intercorrelations with those indices (centrality), and it had higher

average correlations with the learning activity variables (a validity of sorts). Particularly intriguing was

that skills slope, along with a global achievement posttest, was more highly related to the activity

variables than was the raw number of skills acquired. Snow et al. (1986) suggested this may have been

due to the skills slope's capturing more about the progress of learning over time.

The second major finding concerned the role of the activity variables in predicting learning ".1

outcome. As it turned out, most of the tool usage indicators, such as requests for demonstrations, 4
hints, and model solutions, were associated with poor posttest performance. Poor performers also

spent more time debugging and less time planning than did others, and were more likely to quit the

task or start over. In contrast, good performers requested fewer hints, spent more time implementing

rather than debugging, and were more likely to test different cases after a successful run of their

program (Indicator 15). This may have reflected good students' desire to perform addition-al tests of

their knowledge, perhaps to probe the boundaries of their understanding, even after passing the test.

A
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Table 3. Learning Indicators from BIP, the Programming Tutor

LEARNING PROGRESS INDICES

1. Number of problems seen
2. Mean time per problem
3. Number of skills acquired
4. Skills acquired per problem (slope, intercept, standard error)
5. Skills acquired per time on task (slope, intercept, standard error)
6. Skills acquired per skills possible (slope, intercept, standard error)

LEARNING ACTIVITY VARIABLES

(Counts of activities, to be divided by number of problems seen)

1. Student produces correct solution
2. Student has difficulty on the task (according to BIP)
3. Student admits not understanding the task
4. Student disagrees with solution evaluator
5. Student requests solution model
6. Student requests solution flow chart
7. Student requests model program
8. Student starts problem over
9. Student requests at least I hint before starting

10. Student requests at least I but not all hints
11. Student requests all hints (0 - 5 on a problem)
12. Student quits the problem
13. Student quits the problem after seeing all the hints
14. Student quits the problem without seeing any hints
15. Student tests different input cases after successful solution
16. Student tests different input cases after failed solution
17. Student uses BIP input data after failed solution
18. Student runs program parts rather than complete program
19. Student requests aid (model, help, hint) after an error

TIME ALLOCATION

1. Planning: Proportion of time spent before cofig
2. Implementing: Proportion of time spent writing code
3. Debugging: Proportion of time spent debugging code

d TtN

N Note. Time on the tutor must fall into one and only one of the three time allocation portions.



Applying the Taxonomy

In evaluating the HIP tutor with respect to the taxonomy, we ask two questions: (a) What learning

skills does HIP exercise (i.e., how can BIP be classified)? and (b) tfow comprehensive are the

indicators used by Wescourt et al. (1977) and Snow Ct al. (1986) in measuring students' learning skills S44

and their learning progress?

To address the first question, consider a distinction between what is tested and what is taught, BIP

primarily tests for fairly specific skills, in that virtually all its tests are of the multiple operator selection

variety (i.e., students write programs). The posttest also undoubtedly taps some propositional,

schematic knowledge, but not extensively. Other knowledge outcomes could be tested, but they are U
not. BIP teaches skills by having students first read a text (Iearning from Instruction, in taxonomy

terminology), then apply the studied skills in a problem.solving context (Learning through Compilation '

and LUairiig by Drill & Practice). Some studcnts also request help and thereby engage in Learning

from Examples. The good students also tend to invoke Observational Learning when they perform

additional tests of their programs.
.•-, ..

Figure 3a summarizes our assessment of (a) what skills are being exercised by BIP, indicated as the

solid bar, and (b) what skills are being tested, indicated as the striped bar. Bar size represents the

proportion of time spent either engaging the learning skill (solid) or having the skill tested (striped),

relative to engaging or testing other skills. It is important to keep in mind that this analysis Ls rather

informal. We made some rough computations of the times students engaged in the various activities,

based on a review of Snow et al.'s (1986) data on the learning indicators, and on Wescourt et al.'s

(1977) report of some other summary statistics. Our analysis is meant to be merely suggestive. A

more rigorous, systematic analysis of HIP could produce a precise breakdown of the time spent

exercising and testing various learning skills, separately for each student. Also note that only the

knowledge type and instructional environment dimensions are indicated in Figure 3. Domain is

indicated in Figure lb (computer programming is highly quantitative/technical and quality of decisions

is emphasized). tcarning style is not directly asscsscd in 8IP.'
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An approach to the second question, concerning indicator comprehensiveness, is suggested by

Figure 3a: Which skills are being exercised and not tested? First, we can see that although students

are learning rules, they are not tested for them. This could be remedied by including operator tracing

or slection tests. Second, students als are probably acquiring some general rules and skills regarding

program writing strategies, but BIP does not directly test for these. Transfer-of.training tests inserted

into the program (as part of the curriculum) would help determine the generality of the skills learned

in BIP. Third, students read text, and get tested on their knowledge during the posttest, but it would be.

possil)le to test the prol~xitional and schematic knowledge r.,sulting from reading the text more

directly by administering sentence verification tests, sorting tasks, and the like (see Table 2). Finally, -4; 1

the task of writing programs is an operator selection task and thus is more difficult than a task that

would require students merely to understand the workings of a program (an operator tracing task).

Students may understand a program they are unable to write. The inclusion of a proram

understanding task would tup knowledge thlt wo(.ld 1h. mktsted otherwise and thus, should enhance the

accuracy of the student model. K

In sum, DIP generates many indicators of student status and learning progress. Application of the

taxonomy suggests a number of additional ways in which a student's knowledge and learning skill could I

be assessed. Expanding the breadth of learning skill probes should affect the overall quality of any

intelligent tutoring system, both in its role a-s a training device and as a research tool. The performance

of an ITS with a student-modeling component is highly dependent on the quality of the student model

insofar as the system's main job is to select appropriate-level problems. Thus, an ITS should improve

with a better student model, and we made suggcstions here fof refinting a student model. As a research I
tool, an ITS can serve as an environment in which to examine the interrelationships among learning

skills and learning activities. Snow et al.'s analysis of DIP relied on a rich set of learning indicators.

But we think that the taxonomy can be used to provide an additional psychological basis for expiessig ,-.

those indicators. '" .
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(2) Anderson's LISP Tutor

General System Decription

Anderson and his research group have developed intelligeut tutoring systems for geometry, algebra,

and the programming language LISP. We focus here on the LISP tutor. Descriptions of the tutor are

available (Anderson, et al., 1985); thus, we only summarize some of the main features of the system--

especially as they contrast with BIP.

The LISP tutor follows the generic architecture fairly closely. Students read some material in a

textbook, but then go on to spend most of their time interacting with the program. The program

selects problems, gives the student help or advice when asked, and interrupts if the student is

flounderiniK.j

An innovation of the LISP tutor is its use of what Reiser, Anderson, and Farrell (1985) called the

model-tracing methodology, the process by which the tutor understands what the student is trying to do

while the student attemp.s to solve a problem. Whenever the student types in an expression (as part of

a solution attempt), the twtor evaluates the expression as to whether it is the same as what the ideal

student would type in, or whether it indicates a misconception (or bug). If a misconception is

indicated, the tutor intervenes with advice.

For a tutor to analyze the student's response so microscopically, it has to know essentially every

correct step and every plausible wrong step in every problem. The LISP tutor does not incorporate

enough domain knowledge to be able to interpret every action a student might take, but it does have

enough knowledge to be able to interpret all correct solutions and approximately 45% to 80% of

students' errors (Reiser et at., 1985). (In cases wherc the tutor cannot interpret a student's behavior, it

typically probes the student with a multiple-choice question.) When the LISP tutor poses a problem, it

goes about trying to solve the problem itself, simultaneously with the student. It solves the posed

problem with its own production system, which consists of approximately 400 production rules for

correctly writing programs (Anderson, 1987b). It also solves the problem in various plausible incorrect J
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ways, through the action of about 600 incorrect or buggy production rules. Determining what the

student is doing is a matter of comparing student input with its internal production system results.

Learning Indicators

The LISP tutor keeps a record of the student's status with respect to each skill being taught, where

skills are the 400 correct production rules. An indicator of how well the student knows a rule is

incremented when the student uses the rule correctly, and decremented when the student makes an

error. Remedial problems may be selected to give a student experience in L,•ing a troublesome rule.

Unfortunately, studies have not been done on the relationships among learning indicators and

outcomes. Most of the evaluation studies have simply compared LISP-tutored students with

classroom- or human-tutored students on a standard achievement test administered at the end of the

course. However, one study did investigate individual differences in acquisition and retention of

individual productions over a series of 10 lesson-sessions (Anderson, in press). In this analysis, each

production was scored for the number of times it was used incorrectly in problem solving, separately

for each session. A series of factor analyses was performed on these data to determine whether

production factors would emerge. For example, it could be that productions associated with one kind

of learning (e.g., learning to trace functions, planning) would form a factor separate from some other

kind of learning (e.g., learning to select functions, coding). Or lesson-specific factors could have

emerged. In fact, Anderson found evidence for two broad factors: An acquisition factor captured

individual differences in speed of production acquisition, and a retention factor captured individual

differences in the likelihood that acquired productions were retained in a later session.

Applying the Taxonomy

Consider first how we might classify the LISP tutor. Students spend most of their time learning

specific production rules and skills and are continually tested for their ability to apply them in writing

LISP functions. Every student action can be viewed as a test response because the system is

35



interpreting that response as an indication of whether the student knows a particular production rule.

Thus, learning and testing activities in the LISP tutor are almost completely integrated.

Although stud-.nts are learning skills, insofar as writing functions is a multiple operator selection

task, the LISP tutor is testing for students' knowledge of the nles underlying those skills. But this

merely reflects the fact that skills in the LISP tutor are defined precisely in terms of their constituent p.-

rules. Interestingly, the fact that the LISP tutor can represent a student's skill without directly

evaluating that skill (i.e., the system never evaluates whether the function works, per se) is evidence

against the taxonomy's supposition of skill as a separate knowledge type. However, this presumes a

rule-level understanding of skill. In domains for which such a detailed understanding is not yet

available (most domains imaginable at this time), skill probably ought to be considered a functionally

distinct category, even if only for pragmatic reasons.

The instructional environment is one in which students learn initially through brief instruction (a

pamphlet or a textbook), but then go on to compile and refine that knowledge by engaging in extended

problem solving. Figure 3b summarizes our assessment of what learning skills are being exercised and

tested in the LISP tutor.

b

Note that in addition to indicating that students are learning declarative knowledge by instruction,

and procedural knowledge by compiling and practicing it, we have inr1cated other learning products

and sources. The other products are the general rules and skills probably being taught by the LISP

tutor, even though that is not a goal for the tutor. The other sources have to do with the fact that the

LISP tutor is capable of delivering context-sensitive tutorial advice and, through its coaching

capabilities, can readily change the nature of the instructional environment. On one occasion ;, might

correct a student's attempt through direct instruction, but then it might later suggest an anal .gy to a

student, or provide examples of a concept.

Now consider the testing comprehensiveness issue. As can be seen in Figure 3b, we consider all of

the LISP tutor's testing to be for Rule knowledge, either in the Compilation or the Drill and Practice
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environments. (We could also consider Automatic Skills to be tested, but that would requite a rather

detailed analysis of the LISP tutor's entire production collection for how big, compiled productions

subsume their smaller precursors.) Note that first, as with BIP, students' success at propositional

learning and their ability to acquire general rules and skills are not tested. This situation could be

remedied with the insertion of sentence. verfication and transfer-of-training tests. But a more

intriguing suggestion from the standpoint of research derives from the fact that the LISP tutor's multi-

faceted coaching capability, which offers various kinds of tutorial romediation, greatly expands the

range of learning events that may be investigated. For exampie, it would be possible (and interesting)

to keep track of production strength modification separately for each of the various instructional

environments. That is, one could trace the growth in rule indicators over time as a function of whether

those rules were taught (or remediated) with instructional advice, analogies, examples, and so on. One

could ask the question of whether instruction using analogies results in greater subsequent ability to

use the rule(s) so instructed, for example.

In summary, because of the way in which it models students' knowledge as production rules, and

carefully controls the learning environment, the LISP tutor is ideally suited for measuring learning

skills such as the rate at which productions are composed, or the probability of compiling a sequence of

productions as a function of exposure to that sequence. Augmented with the additional tests and

performance records suggested by the application of the taxonomy, the LISP tutor could serve as an

excellent research tool for investigating the time course of learning and individual differences therein.

(3) Smithtown: Discovery World for Economic Principles

General System Description

Unlike the other two systems, Smithtown's main goal is to enhance students' general problem-

solving and inductive learning skills. It does this in the substantive context of microeconomics in

teaching the laws of supply and demand (Shute & Glaser, in press). Smithtown is highly interactive.
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Students pnse questions and conduct experiments within the computer environment, testing and N

enriching their knowledge of functional relationships by manipulating various economic factors.

As a discovery environment, Smithtown is quite different from BIP and the LISP tutor in that there

is no fixed curriculum. The student--not the system--generates problems and hypotheses. After

generating a hypothesis (such as "Does increasing the price of coffee affect the supply or demand of

tea?"), the student tests it by executing a series of actions, such as changing the values of two variables

and observing the bivariate plot. This series of actions, or behaviors, for creating, executing, and

following-up a given experiment, defines a student solution.

Despite having no curriculum, Smithtown does have the instructional goal of teaching 8encral

problem-solving rules and skills (called good crtics) such as "collect baseline data before altering a

variable" or "generalize a concept across two unrelated goods." Instead of a curriculum guiding

instructional decisions, Smithtown relies on a process of constantly monitoring student actions, looking

for evidence of good and poor behavior, and then coaching students to become more effective problem

solvers. The system keeps a detailed history list of all student actions, grouping them irto (i.e.,

interpreting them as) behaviors and solutions. Smithtown diagnoses solution quality in two ways. It

looks for overt errors by comparing student solutions with its buWV critics, which are sets of actions (or

-non-actions) that constitute nonoptimal behaviors (e.g., "fail to record relevant data in the online

notebook"). It also compares student solutions with its own good critics (expert solutions). W

Discrepancies between the two are collected into a list of potential problem areas and passed on to the

Coach for possible remediation. To illustrate, if the student failed to enter data into the online

notebook for several time frames and had made some changes to variables, the system would recognize

this as a deficient pattern and prompt the student to start using the notebook more consistently.

Smithtown's student model is based on two statistics: (a) the number of times the student

demonstrates a buggy critic (errors of commission), and (b) the ratio of the number of times the

student uses a good critic over the number of times it was applicable (errors of omissirn). Coaching is X

based on the heuristic of first advising about buggy behaviors, then advising on any blatant errcrs of
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omission. Advice is always given in the context of a particular experiment, so, like the LISP tutor, it is

context-sensitive. For example, the coach might say,

You haven't graphed any data yet and I think you should try it out. This is often a good
way of viewing data. It lets you plot variables together and some surprising relationships" ~may become apparent.

However, the coach is fairly unobtrusive: After advice is given, there is no further coaching for some

time.

Smithtown also knows about variable relationships that constitute economics principles (such as

"Price is inversely related to quantity demanded'). If a student uses the system's hypothesis menu and

states this relationship (e.g., *As price increases, quantity demanded decreases'), the student is

congratulated and told the name of the law just discovered (e.g., "Congratulations! You have just

discovered what economists refer to as the Law of Demand').

Learming Indicators

Shute, Glaser, and Raghavan (in press) conducted an extensive evaluation of differences among

students in what the students learned and how they interacted with Smithtown. Two data sources were

used: a list of all student actions, and a set of verbal protocols in which students justified their actions

and predicted outcomes of the actions.

Table 4 shows a set of 29 learning indicators constructed for analyzinag individuals' performance.

Indicators are clustered into three general behavior categories: (a) actiity - explomtoyy level skills

(indicators relating to activity level and exploratory behaviors), (b) data management level skillt

(indicators for data recording, efficient tool usage, and use of evidence), and (c) thinng and planning

level skills (indicators for consistent behaviors, effective generalization, and effective experimental

behaviors).

Shute ct al.'s sample (N = 10) was too small to analyze formally, but the indicators were examined

for which ones discriminated successful from unsuccessful learners. Two subjects--one who performed
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Table 4. Learning Indicator3 from Smithtown, the Economics Tutor

ACTIVITY/EXPLORATORY LEVEL SKILLS

1. ACTIDiY LEVEL

1. Total number of actions
2. Total number of experiments
3. Number of changes to the price of the goods

II. EXPLORATORY BEHAVIORS (Counts; i.e., number of ...)

4. Markets investigated
5. Independent variables changed I --

6. Computer-adjusted prices
7. Times market sales information was viewed ,
8. Baseline data observations of market in equilibrium

DATA-MANAGEMENT LEVEL SKILLS

Ili. DATA RECORDING

9. Total number of notebook entries
10. Number of baseline data entries of market in equilibrium I
11. Entry of changed independent variables

IV. EFFICIENT TOOL USAGE (Ratios of number of cffective uses over number of uses)

12. Number of relevant notebook entries / total number of notebook entries
13. Number of correct uses of table package / number of times table used
14. Number of correct uses of graph package / number of times graph used .' •

V. USE OF EVIDENCE

v 15. Number of specific predictions/ number of general hypotheses
16. Number of correct hypotheses / number of hypotheses

THINKING AND PLANNING LEVEL SKILLS
V1. CONSISTENT BEHAVIORS (Counts; i.e., number of ...)

17. Notebook entries of planning menu items
18. Notebook entries of planning menu items / planning opportunities
19. Number of times variables were changed that had been specified beforehand in the

planning menu
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Table 4. Learning Indicators from Smithtown (cont.)

Vii. EFFECTIVE GENERALIZATION (Event counts; i.e., number of times ...)

20. An experiment was replicated
21. A concept was generalized across unrelated goods
22. A concept was generalized across related goods
23. The student had sufficient data for a generalization

VIII. EFFECTIVE EXPERIMENTAL BEHAVIORS (Event counts; i.e., number of times ...)

24. A change to an independent variable was sufficiently large
25. One of the experimental frames was selected
26. The prediction menu was used to specify an event outcome
27. A variable was changed (per experiment)
28. An action was taken (per experiment)
29. An economic concept was learned (per session)

poorly on the pretest but well on the posttest (a successful learner), and one who who did poorly on

both tests (an unsuccessful learner)--were selected for more careful scrutiny.

The two subjects differed mostly on indicators of thinking and planning skills (i.e., effective

experimental behaviors). In particular, the better subject collected and organized his data from a more

theory-driven perspective, which contrasted with the more superficial and less theory-driven approach

used by the poorer subject. The better subject generalized concepts across multiple markets (which the

poorer subject did not do), engaged in more investigations within a given market, and did not move

randomly among markets as did the poorer subject. The better subject also made large changes to

variables so that any repercussions could be detected. This contrasted with typically small changes

made by the poorer subject, who justified her choices by claiming they were more "realistic."

Replicating experiments to test the validity of results is an important scientific behavior and similar to

BIP's Indicator 15. The better subject conscientiously replicated experiments whereas the poorer

subject did not. One other indicator, data management skills, distinguished the two subjects. The

better subject recorded more notebook entries, and the ones that he recorded consistently included
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relevant variables from the planning menu. The poorer subject used the notebook sporadically and

often failed to record important information.

Applying the Taxonomy

Again, we first consider the classification of Smithtown. Knowledge types taught are primarily

general skills (i.e., learning effective inquiry strategies for a new domain), domain-specific skills

pertaining to economics knowledge, and domain-specific mental models of the functional relationships

among microecononic factors. Students also are presumed to acquire some declarative knowledge and

rules about ecoaomics while interacting with the environment. The insouctional en'ironment is a

discovery microworld and thus most of the learning that occurs results from students inducing

knowledge and skills through observation and discovery, then perhaps compiling those skills by

practicing them in the conduct of experiments. There is tutorial assistance if a student is judged to be

floundering in discovery mode, however; we indicate this in Figure le as learning propositions and skills

by direct instruction. Figure 3c shows that in overall emphasis, Smithtown is quite distinct in both goals

and approach from BIP and the LISP tutor.

Regarding the issue of testing comprehensiveness in Smithtown, we consider two kinds of tests: (a)

the online indicators used by the system in diagnosis, and (b) the separate posttest that measures

economics knowledge gained during the tutorial. For the purpose of filling out Figure 3c, we

considered half the total testing to be online and the other half to be the posttest; the striped bars are

marked as to the testing source. Figure 3c shows that as in the LISP tutor, the online indicators

primarily reflect rule and skill knowledge, but in Smithtown, the testing context is the discovery

environment. Another key difference is that the rule and skill knowledge is not related to the

economics domain but rather, to the subject's ability to manipulate the environment and use its tools to

test hypotheses. The posttest did tap domain knowledge. One part of the posttest battery was a

multiple-choice test that measured declarative knowledge. A second part was a "scenarios test" that

had subjects reason through various economics scenatrios. The scenarios test illustrates a means for
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assesiog mental models; it was designed to assess students' ability to run mental simulations of

complex economics scenarios (see Shute & Glaser, in press, for a detailed discussion of the test).

Figure 3c suggests that perhaps the greatest mismatch between what learning skills were exercised

and what were tested occurs in the General Rule and Skill cells. A shortcoming of the Smithtown

evaluation is that one of its stated primary goals is to help students become more effective in

conducting experiments in a microworld environment, acquiring general skills as a result of their

investigations. But this instructional goal was measured only indirectly on the posttest, which relied on

declarative tests of economics knowledge. A more direct assessment of the degree to which the stated

goals could be reached would require a transfer of skills in a system structured similar to Smithtown

but containing different domain knowledge (interestingly, there is such a system, but the transfer

experiment has not yet been conducted). Truly general inquiry skills developed in Smithtown would

presumably transfer to the new environment.

Another smaller mismatch is that declarative knowledge of basic economics principles was tested at

posttest, but not while students were interacting with the tutor. It seems reasonable, both from a

research standpoint and from the standpoint of enhancing the student model, to integrate dedarative

knowledge tests with tutoring.

A major factor missing here and throughout out discussion of the three tutors is the style

dimension. Inspection of Table 4 shows that the set of indicators Smithtown collects and monitors are

really not direct indicators of learning skill per se but rather, are style indicators in the sense that they

reveal how an individual organizes his or her learning environment. From this perspective, a key

question addressed in the Shute et al. analysis had to do with style interrelationships (the

"dimensionality of style' question) and the relationship between style and learning outcome (the validity

question). In one sense, this is exactly the study needed to understand learning skills in the most

natural, ecologically valid context. It is also a preliminary question to one of the goals we are pushing

for here: to be able to assess basic learning skills, controlling for learning style. Smithtown may be

best suited for analysis of the style issue. But before style variables are better understood, more
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structured environments such as BIP and the LISP tutor, which by forcibly directing learning activities '0,

designate a less important role for individual variability in learning style, may be more conducive to

research on basic learning skills.

V. LEARNING INDICATORS FOR VALIDATION STUDIES

To this point, we have discussed how the taxonomy might be applied so as to enable a more

thorough evaluation of student learning skills and outcomes. The applications discussed above might

have the flavor of suggestions for improving the tutors. That is not the intention. We see the main

function of the taxonomy as primarily a research one. By more thoroughly examining what students

learn in instruction, it should be possible to conduct more-refined studies on individual differences in

learning. Snow et al. (1986) generated and analyzed a set of learning indicators, Anderson (in press)

did a similar analysis, and a similar analysis is underway for Smithtown. Our claim is that the taxonomy

should suggest additional ways in which to record learning skills, and this should result in a

psychologically rich and principled set of additional learning indicators. Each cell in the full four-

dimensional taxonomy defines a proposed learning skill. An important next question, open to

empirical investigation, has to do with the true reduced-space dimensionality of learning skills (see

footnote 1). From an individual differences perspective, how many learning abilities must we posit, and

at what level of detail, to characterize skill differences among learners over all taxonomy cell tasks?

There is also a second, related application. The taxonomy should help us develop for instructional

programs learning indicators that can serve as criteria against which other individual difference -. 1
measures, such as aptitude and basic abilities tests, might be validated. That is, our taxonomy-derived

indicators can serve as supplements or even replacements for the conventional criteria of post-course

achievement tests, course grade-point-average, on-the-job performance tests, and supervisor/teacher

ratings, in the conduct of construct validation studies. Indeed, it was this goal of creating more

extensive criteria against which new aptitude tests might be validated that led us into the taxonomy

project in the first place.
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Learning Abilities Measurement Program (LAMP)

0 Over the past several years, the Air Force has supported a program of basic research designed to

explore the possibility of using contemporary cognitive theory as the basis for a new system of ability

measurement (Kyilonen, 1986; Kyllonen & Christal, in press). Currently, the Air Force, as well as the

other Services, selects and assigns applicants at least partly on the basis of their performance on a

conventional aptitude battery, which includes tests of reading comprehension, arithmetic reasoning,

numerical operations, and so forth. The goal of thc Learning Abilities Measurement Program

(LAMP) is to provide the research base that might lead to supplementing or even replacing those

conventional tests with new measures more closely aligned with an information processing perspective.

What might these new tests be? The project has thus far investigated measures of working memory

capacity, information processing speed, breadth and depth of declarative knowledge, availability of

strategic knowledge, and other such abilities. It would go beyond the scope of this chapter to review

the project's research (see Kyllonen, 1986; Kyllonen & Christal, in press, for current reviews), but the

prototypical study investigates the relationship among various kinds of cognitive measures (such as

working memory capacity) and learning outcome measures (list recall) under various instructional

conditions (such as variations in study time).

A major focus of the research is examining the relationships between ability measures and learning

outcomes. But the range of learniug outcomes investigated thus fa, not only on our project but on

others as well, has been quite limited, in two ways. First, the range of learning skills examined has re

been rather narrow-, this is especially apparent given the breadth of potential learning skills suggested

by the taxonomy. But second, and perhap% even more importantly, the learning tasks we have

employed have tcndcd to be short-term laboratory tasks, and therefore may not be truly representative

of real-world learning activities. This inhibits the transition of research to application, insofar as

generalization from narrow laboratory tasks to real-world learning tasks is tenuous. And as Greeno

(1980) has argued, use of ecologically valid learning tasks is defensible from the standpoint of leading C"

to better basic research as well.
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Thus, for both applied and theoretical reasons, a dccision was made recently to expand the range of

learning criteria employed. A laboratory has recently been built at Lackland Air Force base that I

accommodates 30 work stations capable of administering intelligent computerized instruction such as

that reviewed previously. Intelligent tutoring systems in the domains of computer programming,

electronic troubleshooting, and flight engineering have been developed or are currently underway,

Over the next several years, we will investigate learning on these tutors and conduct studies that

examine the relationships among basic cognitive abilities and various learning skills and outcomes. We

cxpect the taxonomy ;s described here to assist us in developing learning indicators for the tutorial

environments.

Applying the Taxonomy: A Practical Guide
I

Thus, we arc employing a two-pronged approach in generating learning skill indicators (or LAMP

validation studies. We design instructional programs capable of producing rich traces of learner

activities, then we intend to analyze and categorize those activities so as produce psychologically

meaningful learning indicators. Tables 5 and 6 present the general outline for our approach. Note that

we have written the design and analysis steps in such a way as to be broadly useful. Although our

application is in the design and (especially) analysis of intelligent tutoring system.% the steps suggested

could be adapted to any kind of instructional system, computerized or even classroom.

VI. SUMMARY AND DISCUSSION

We have presented a taxonomy of learning, based on previous research and on contemporary

cognitive theory. We have also proposed how the taxonomy can be. applied to generate indicators of

what a student in an instructional situation is learning, and how well he or she is learning it. But just

how well does our proposed taxonomy.indicator system work?

Consider four major uses for the system (these and a fifth research application are listed in Table

7). First, the taxonomy can suggest what kinds of skills are being exercised and tested in an

instructional setting. In this capacity, the taxonomy srvcs in much the same way Bloom's or Gagne's
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Table 5. ApplicationLs of die TDaxonomy: Suggestions for Design

INSTRUCTIONAL SYSTEM DESIGN STEPS

1. Determine desired knowledge outcomes: 9

a, Slate the instructional goals (e.g., acquisition of a mental model, a set of propositions, a
set of skills), I,>

b. Specify the particular facts/skilLs/mental models to be taught.,, ,

c. Determine tests to be used for assessing particular knowledge outcomes (Table 2). ,

2. Determine environment for achieving knowledgeoutcmes:,

a, Consider the kind of learning strategy desirable to invoke (Table 1).

b. Consider alternative means for achieving knowledge outcome (could be used as a
rcmediation strategy, or simply as a variation to avoid instructional monotony). .

c. Record student learning succes with respect to the knowledge-outcome-by-
instructional.environment matrix. This allows more precise statements of the
effectiveness of the instruction. ,

3. Consder learning style issues:

a. Consider whether to encourage particular types (styles) of interaction.

b. If learning style is left free. make provisions to record the manner in which the student
interacts with the instructional environment (for suggestions se Tables 3 and 4). This
also allows more precise statements. of the effectiveness of the instruction. ,

c. If particular learning styles are encouraged through feedback and suggestions, consider
varying the kinds of styles encouraged so as to allow experimental comparisoms of the
relative effectiveness of various styles.
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Table 6. Applications of the Taxonomy: Suggestions for Analysis C

LEARNING TASK ANALYSIS STEPS

1. Determine the knowledge outcome goals for the instruction: I

a. Determine the nature of the stated instructional goals (e.g., acquisition of a mental
model, a set of propositions, a set of skills).

b. Determine what kinds of tests are embedded within the instruction (consulting Table 2). N,

c. Determine the match between the tests used and the knowledge outcomes intended (as 0

in Figure 3).

2. Determine the nature of the instructional environment:

a. For every instructional exchange (every student-instructor interaction episode), consider
what learning strategy is invoked (consulting Table 1) during the exchange. Generate I
learning activities profiles for the entire instructional program (as in Figure 3).

b. Organize records of student learning success with respect to the knowledge-outcome-by-
instructional-environment (KO x IE) matrix. That is, devise a means for assigning each
student a separate learning success score for each cell in the KO x IE matrix. Scores
would be based on tests following particular instructional exchanges. p

3. Consider learning style issues:

a. Consider whether particular types (styles) of interaction are encouraged.

b. If learning style is left free, and there is between-student style variability, but no within-
student style variability, then separate students by style before conducting any analyses of
the KO x IE matrix.

c. If learning style is left free, and there is within-student style variability (e.g., students
engage in holistic processing some times, serial processing at others), create separate
KO x IE profiles separately for the various style orientations.

4. Considerations for transfer studies:

a. Degree of transfer should be a function of the similarity of the learning activities profiles i ,
for two learning taskL, r•"

b. Similarity is computed over the KO x IE matrices (possibly for separate styles), and
domain.
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Table 6. Applications of the Taxonomy (cont.)

I ~ 5. Considerations for optimizing or predicting global outcomes: )

a. Expected global outcome for a particular student will depend on the match between the

student's personal learnig skill profile and the learning skills the instruction exercises
(the learning activities profile, Figure 3).

b. Optimizing global outcomes for a particular student can be seen as a linear
programming problem. Instruction should maximize exercising the student's strongest
skills subject to the cost (e.g., in time) for exercising those skills.

I.

Table 7. Applications of the Taxonomy. WMat It Can Be Used For

INSTRUCTIONAL SYSTEM EVALUATORS

(Teachers atd Administrators)

Facilitates analysis of what kinds of learning skills are being exercised and tested in an
instructional setting (see Figure 3)

INSTRUCTIONAL SYSTEM DESIGNERS

- Suggests a range of possible instructional environments for achieving particular knowledge
outcomes (see Table 1/Figure 1)

Specifies techniques (tests) for probing a wide range of knowledge and learning skill
outcomes (see Table 2)

COGNITIVE RESEARCHERS

- Suggests predictions about tansfer reltions among learning experiences (see Figure
I/Table 6)

- Suggests indicators (dependent variables) of what and how well a student is learning (see
Figure 3/Tables 2,6)
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taxonomies do. The advantage to our proposal is that it is more closely tied to current cognitive theory,

which we hope will enable us to apply the system more easily in analyzing learning in routine

instructional settings. A second use for the system concerns primarily the environment dimension.

The specification of multiple instructional environments permits the assessment of a range of means

for achieving particular knowledge outcomes. If an instructor's goal is to teach a mental model of some

system, the instructor can simply instruct it, or use an analogy, or have the student discover the model

through observation of the system, and so on. A third use for the system is to make predictions about

transfer relations among learning experiences. We would predict that the closer, taxonomically, two

learning situations are, the more likely that whatever is learned in one will transfer to the other. Of

course, this is an open empirical question. A benefit of the taxonomy is that it suggests a

straightforward research program for addressing this kind of question.

While all three of these applications may be useful, we believe that the most important role of the

taxonomy is in establishing the means for probing a much wider range of knowledge and learning skill

outcomes. This capability is obviously important for research purposes, but it is also important for

evaluating educational systems. Consider a general problem in evaluating innovative educational

programs (discussed by Nickerson, Perkins, & Smith, 1985). Over the years, many such programs--

such as ones for teaching creative thinking or ones for teaching general thinking skills--have been 1*.

developed. All too often, casual observation suggests that such programs are having desirable effects

on students, but such effects do not show up under the scrutiny of carefully conducted evaluation I-.

studies. Creators of such programs typically complain that the scientific model of evaluation is

inappropriate because the true gains students experience are somehow missed. One role for the

taxonomy might be to suggest how additional learning outcomes and skills can be assessed in order to

enable a more thorough evaluation.

Even among the three instructional programs we reviewed here, a rather conservative approach to

assessing the impact of the tutoring.system was taken. To some extent, the LISP tutor, BIP, and

Smithtown all depend on standard achievement outcome tests as a means for their validation. Though

'N
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it is important to establish that these tutors do affect overall achievement, it is not sufficient. While

interacting with a tutor, or in any instructional environment, students can be learning many different

things. A major role for the taxonomy is to suggest a richer testing system for evaluating a broader

range of student outcomes.I "
Finally, the taxonomy-indicator system should facilitate pursuit of both applied and basic research

questions. Our major practical application for the taxonomy is to have it assist in the specification of

variables that indicate what and how well a subject is learning as the subject interacts with a tutor over

a lengthy series of lessons. These variables then will serve as criteria against which newly developed

measures of cognitive ability will be validated. Additionally, a wide range of basic research issues

emerges. Are the different knowledge types affected by the same variables? Are fast propositional

learners also fast production rule learners? Are there interactions between knowledge type and the

instructional environment? Are individual differences in learning more dependent on the knowledge

* type or the environment? Our research programs are only at the very beginning stages in addressing

these kinds of fundamental questions about the nature of learning and individual differences therein.

J
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